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A B S T R A C T

Panchromatic and multispectral image fusion, termed pan-sharpening, is to merge the spatial and spectral
information of the source images into a fused one, which has a higher spatial and spectral resolution
and is more reliable for downstream tasks compared with any of the source images. It has been widely
applied to image interpretation and pre-processing of various applications. A large number of methods have
been proposed to achieve better fusion results by considering the spatial and spectral relationships among
panchromatic and multispectral images. In recent years, the fast development of artificial intelligence (AI)
and deep learning (DL) has significantly enhanced the development of pan-sharpening techniques. However,
this field lacks a comprehensive overview of recent advances boosted by the rise of AI and DL. This paper
provides a comprehensive review of a variety of pan-sharpening methods that adopt four different paradigms,
i.e., component substitution, multiresolution analysis, degradation model, and deep neural networks. As an
important aspect of pan-sharpening, the evaluation of the fused image is also outlined to present various
assessment methods in terms of reduced-resolution and full-resolution quality measurement. Then, we conclude
this paper by discussing the existing limitations, difficulties, and challenges of pan-sharpening techniques,
datasets, and quality assessment. In addition, the survey summarizes the development trends in these areas,
which provide useful methodological practices for researchers and professionals. Finally, the developments
in pan-sharpening are summarized in the conclusion part. The aim of the survey is to serve as a referential
starting point for newcomers and a common point of agreement around the research directions to be followed
in this exciting area.
. Introduction

With the rapid development of remote sensing technologies, more
nd more satellites are launched and a large number of remote sensing
mages are collected by various imaging sensors. The information about
arth is recorded in different observation modes by these remote
ensing images, which provide abundant data for the interpretation
f the observed scene. Until now, these images have been extensively
pplied to many fields, such as resource exploration [1], environmental
urvey [2], and battlefield reconnaissance [3], and have achieved great
uccess.
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As two important attributes of remote sensing images, spatial and
spectral resolutions have significant influences on the interpretation
accuracy of the observed scene. Although the spatial and spectral
resolutions of remote sensing images are continuously improved, a high
spatial and spectral resolution cannot be achieved simultaneously for
these images. This is caused by the intrinsic trade-off between spatial
and spectral resolutions of imaging sensors [4].

In an imaging system, the spectral resolution can be improved by
increasing the number of bands and reducing the width of bands.
But when the energy of incident light is fixed, the energy received
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Fig. 1. Multispectral (MS) and panchromatic (PAN) image pairs from different satellites.
by the narrowband will be reduced, which results in the decrease of
the signal-to-noise ratio of the remote sensing images. To satisfy a
specified signal-to-noise ratio in this case, one option is to improve the
size of light-sensing units. As a result, the spatial resolution of these
images will degrade. On the other hand, the spatial resolution mainly
depends on the density of light-sensing units on imaging sensors. By
reducing the size of light-sensing units, the spatial resolution can be
enhanced. However, the high density of light-sensing units means the
improvement in terms of manufacturing costs and difficulty of imaging
sensors.

With the intrinsic constraint, the panchromatic (PAN) image can
provide a high spatial resolution. But it is composed of only one band.
The multispectral (MS) image possesses several spectral bands and
contains abundant spectral information. The spatial details in the MS
image are inferior to those in the PAN image. Fig. 1 shows some MS
and PAN image pairs from different satellites. We can find that the
PAN image is more clear than the MS image. But the former is a
grayscale image. Besides, Table 1 illustrates the spatial and spectral
resolutions of some optical satellites, which can capture PAN and MS
images simultaneously. In Table 1, the spatial resolution is measured
in meters. It can be seen that the spectral resolution of the MS image
is higher than that of the PAN image. Conversely, the PAN image is
superior to the MS image in terms of the spatial resolution. PAN and MS
images show the spatial and spectral properties of the observed scenes,
respectively.

It is obvious that the downstream tasks, such as target detection [5]
and classification [6,7], cannot be efficiently achieved merely by using
the PAN or the MS image. Because the lack of high spatial or spectral
resolution limits the interpretation accuracy of the observed scene.
To realize the required accuracy of the downstream tasks, there is an
increased demand for remote sensing images with a high spatial and
spectral resolution. Therefore, it is vital to improve the spatial and
spectral resolutions of remote sensing images for more accurate earth
observation.

To this end, image fusion is adopted to integrate the complemen-
tary information in different kinds of images for more comprehensive
descriptions of the observed scene [8]. In 2006, IEEE Geoscience and
Remote Sensing Society (GRSS) began to organize the data fusion
contest to boost this field [9]. Up to now, the data fusion contest has
been successfully held for 17 times [10]. There are many different
fusion tasks in GRSS to exploit the multisource and multimodal remote
sensing data. For example, synthetic aperture radar and optical remote
sensing image fusion [11] explores the physical properties and surface
characteristics of the observed scene, which has shown great potential
in object identification. For hyperspectral image and light detection
and ranging fusion [12], spectral features and range information are
combined to efficiently improve the accuracy of semantic segment.
Light detection and ranging exhibits strongly heterogeneous charac-
teristics compared with the hyperspectral image and so an elaborate
combination scheme needs to be considered decently. Multitemporal
fusion [13] takes advantage of the time series of multisensor images,
which extends MS or hyperspectral images from 3D cubes to 4D data
through the introduction of the time variable. It enables to capture
the change information in a short time or long time series. In the
228
Table 1
Spatial and spectral resolutions of different satellites.

Satellite Spectral bands Spatial resolution (m) Launch time

QuickBird MS 4 2.44 m 2001PAN 1 0.61 m

GeoEye-1 MS 4 2 m 2008PAN 1 0.5 m

IKONOS MS 4 4 m 1999PAN 1 1 m

Pleiades-1A MS 4 2 m 2011PAN 1 0.5 m

Pleiades-1B MS 4 2 m 2012PAN 1 0.5 m

WorldView-2 MS 8 2 m 2009PAN 1 0.5 m

WorldView-3 MS 8 1.24 m 2014PAN 1 0.31 m

WorldView-4 MS 4 1.24 m 2016PAN 1 0.31 m

GF-1 MS 4 8 m 2013PAN 1 2 m

GF-2 MS 4 4 m 2014PAN 1 1 m

spatiotemporal fusion task, the high spatial and temporal resolution
image can be created by merging the low spatial resolution but high
temporal resolution image and the high spatial resolution but low
temporal resolution images, which can provide continuous monitoring
for regional changes. In recent years, to obtain the high spatial res-
olution hyperspectral image, the fusion of MS/PAN and hyperspectral
images [14–16] has attracted more attention, which enriches the spatial
information in the hyperspectral image. Through the models mentioned
above, abundant properties of the observed scene can be reflected more
completely by the fused image than the image acquired by a single
sensor.

Among these tasks that integrate the complementary information
from different images, we specifically focus on the fusion of PAN and
MS images, also termed pan-sharpening [17]. Generally, as shown in
Fig. 2, image fusion can be classified into four levels: sensor/pixel level,
feature level, confidence level, and decision level. Sensor/pixel-level
fusion directly integrates the original pixel information in low spatial
resolution multispectral images (LR MS) and PAN images, which aims
at generating a fused image with a high spatial and spectral resolution.
Sensor/pixel-level fusion also can be regarded as one kind of prepro-
cessing of LR MS and PAN images, which can improve the resolutions
of images to describe the observed scenes more accurately. In feature-
level fusion [18–20], the features of objects in LR MS and PAN images
are extracted. Then, these features are combined for the classification
or detection of the objects in observed scenes. As for confidence-level
fusion [21,22], the confidence scores rather than the decision results
from LR MS and PAN images are merged. Then, the final decision
result is derived from the fused confidence scores. Decision-level fu-
sion [23,24] combines the decision results, such as labels or locations
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Fig. 2. Fusion levels of low spatial resolution multispectral image (LR MS) and panchromatic (PAN) images in the interpretation of observed scenes.
of objects, from LR MS and PAN images to produce a final decision,
in which voting, statistical, and fuzzy logic schemes are adopted to
fuse these results. In recent years, sensor/pixel-level image fusion is
boosted a lot due to the development of artificial intelligence. There
have been new developments and trends about the sensor/pixel-level
fusion of MS and PAN images. Therefore, this paper mainly focuses on
the sensor/pixel-level fusion to integrate the fine spatial details in the
PAN image and the abundant spectral information in the MS image.
After pan-sharpening, the high spatial resolution (HR) MS image is
finally generated.

The concept and benefits of pan-sharpening are illustrated in Fig. 3.
The fused HR MS image is characterized by both high spatial and
spectral resolutions, which are helpful for the efficient interpretation
of the observed scene. For example, Rayegani et al. [25] applied the
fused images to the change detection of natural ecosystems, in which
two spatial and spectral indexes were designed to select proper fusion
methods. Lottering et al. [26] used the abundant texture information
in the WorldView-2 pan-sharpened images. In this method, an artificial
neural network was considered to infer vegetation defoliation from the
fused images. Qu et al. [27] used the fused images for anomaly detec-
tion and the results showed that these images boosted the accuracy.
Specifically, in [27], the original detection rate of LR MS images was
0.3 and the detection rate was improved to 0.9 by using the fused
images. Du et al. [28] compared the change detection performance
between LR MS images and fused images. The results demonstrated that
the Kappa coefficient was raised by 0.2 and the overall accuracy was
improved by 10% after implementing change detection on the fused
images.

Over the past decades, many pan-sharpening methods have been
proposed and they can generate satisfactory results with impressive per-
formance. In general, these pan-sharpening methods can be categorized
into four categories: component substitution (CS) methods, multiresolu-
tion analysis (MRA) methods, degradation model (DM) based methods,
and deep neural network (DNN) based methods. In recent years, the rise
of DNNs has brought new opportunities for the quality improvement of
the fused image, and state-of-the-art fusion results have been produced
by DNN-based pan-sharpening methods.

The success of DNN-based pan-sharpening methods benefits from
the powerful learning capabilities and a large number of training
datasets. However, for the pan-sharpening task, the training datasets
must be prepared elaborately according to the Wald protocol [29].
Since DNNs are trained on the handcrafted reduced-resolution data,
they cannot reach the anticipated effects on the full-resolution data.
The mapping between source images and the fused image is so com-
plex that the learned DNNs on the reduced-resolution data cannot be
generalized to the full-resolution data. In addition to this, the scarcity
and complicated construction of the reduced-resolution training data
promote some DNNs to leverage the full-resolution data for training.

For existing reviews, they mainly summarized CS- and MRA-based
pan-sharpening methods in detail while ignoring the developments in
the other two fields, such as fusion methods based on DM or DNN.
229
Fig. 3. Concept and benefits of low spatial resolution multispectral image (LR MS) and
panchromatic (PAN) image fusion.

For example, Thomas et al. [30] reviewed the methods based on
CS and MRA from the perspective of remote sensing physics. Vivone
et al. [31] provided a critical and extensive comparison of different
CS- and MRA-based methods on the datasets from different satellites,
which promoted the standardized implementations of many available
pan-sharpening codes. Vivone et al. [32] further presented an overview
of pan-sharpening on the basis of [31]. In addition to the review of
pan-sharpening, Meng et al. [33] published a large-scale dataset to
the community, which improved the availability of HR remote sensing
images. However, most of these surveys do not involve the taxonomy of
DM- and DNN-based methods, nor do they conduct an in-depth analysis
of the formulations of pan-sharpening methods.

Besides, we also summarize the evaluations of fused images to
reflect the field more comprehensively. Nowadays, it has become in-
creasingly difficult to visually distinguish between the fused images
of different DNN-based pan-sharpening methods. On the one hand,
as one important part of the pan-sharpening task, the evaluation of
the fused image provides evidence for the choice of DNNs. Recently,
some novel evaluation indexes and tools are proposed to calculate
the similarity between the fused image and the reference image or
assess the spatial and spectral features in the no-reference case. The
gap between evaluation indexes and visual performance is reduced.
Unfortunately, the analysis of evaluation indexes is not discussed in the
reviews mentioned above. On the other hand, the quality of the fused
image should be further evaluated on the downstream tasks, because
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Table 2
Main symbol list.
Symbol Description

LR MS Low spatial resolution multispectral image
PAN Panchromatic image
HR MS High spatial resolution multispectral image
CS Component substitution
MRA Multiresolution analysis
DM Degradation model
DNN Deep neural network
𝐋𝑏 The bth band in the LR MS image
𝑃 PAN image
𝐇𝑏 The bth band in the HR MS image, also fused image
𝐋𝑏 The bth band in LR MS image upsampled to

the size of PAN image
�̃� The PAN image synthesized by the upsampled bands

in the LR MS image
𝑟 Spatial resolution ratio between LR MS and PAN

images
N The number of bands in MS image
𝑋 The matrix form of LR MS image via rearrangement

with matching size
𝑌 The matrix form of PAN image via rearrangement

with matching size
𝑍 The matrix form of the fused image via rearrangement

with matching size
𝐷 The spatial downsampling matrix
𝐵 The spatial blurring matrix
𝑆 The spectral degradation matrix

pan-sharpening is just a pre-processing step in the interpretation of
the observed scene. Therefore, it will be more meaningful if we can
compare the interpretation performance of the same task on the fused
images produced by different pan-sharpening methods. It is our firm
belief that only the task-oriented performance assessment of the fused
image boosts the practical process of pan-sharpening methods.

In this paper, we have analyzed about 220 papers for pan-
sharpening and provide scientific readers with a comprehensive review
of the state-of-the-art pan-sharpening methods, especially DM- and
DNN-based methods. Meanwhile, the purpose of this review is to
contribute valuable insights into the quality evaluation of the fused im-
age. Finally, dedicated discussions on datasets, evaluations, and future
trends are presented to support related researchers by understanding
the limitations, difficulties, and challenges in this field.

The remainder of the paper is organized as follows. In Section 2,
we present a taxonomical review of the pan-sharpening methods falling
into the four categories. Section 3 describes the evaluation indexes in
reference and no-reference cases, respectively. Section 4 introduces the
limitations, difficulties, and challenges. Finally, conclusions are drawn
in Section 5.

2. Taxonomy of pan-sharpening methods

In this section, some classical methods and their variants are also
reviewed for a comprehensive literature survey. According to their
formulations, different kinds of pan-sharpening methods are organized
into a taxonomy.

2.1. Notions

For convenience, Table 2 reports the symbols with their correspond-
ing description, where we denote scalars as lowercase italics letters,
vectors as boldface lowercase letters, and matrices as boldface capitals.
In DM-based methods, source and fused images are usually rearranged
as matrices through image partition and vectorization, or other prepro-
cessing methods to match the spatial and spectral degradation models.
For other acronyms and symbols used in the following parts, they will
be defined upon need.
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2.2. Taxonomy

Taking into account all the reviewed papers, we divide the pan-
sharpening methods in a hierarchy of classes. Fig. 4 demonstrates
the hierarchical taxonomy of methods proposed for pan-sharpening.
In the hierarchy, these methods can be generally split into four cat-
egories: CS-based methods, MRA-based methods, DM-based methods,
and DNN-based methods.

For the methods based on CS, the spatial and spectral information
in the MS image is supposed to be separable so that the spatial com-
ponent in the up-sampled LR MS image can be directly replaced by
the corresponding PAN image. Following the principle, the up-sampled
LR MS image is firstly projected into a new space by some suitable
transformations, which can produce a spatial component. Then, the
spatial component is substituted entirely or partially by the histogram-
matched PAN image. Finally, the fused HR MS image is generated by
the corresponding inverse transformation. Within this category, there
are some classical and common transformations, such as intensity-
hue-saturation (IHS) transformation [34], principal component analysis
(PCA) [35], and Gram–Schmidt (GS) transformation [36].

For MRA-based methods, it is assumed that the missing spatial
details in the LR MS image can be inferred from the PAN image. The
formulation is also embodied as Amélioration de la Résolution Spatiale
par Injection de Structures [37], a French name. Then, some efficient
tools, such as MRA, are employed to extract the spatial details, also
termed high frequencies, from the PAN image. Next, these details are
injected into the LR MS image through some fusion rules. Various
MRA tools [38] offer different choices for researchers to specifically
model the spatial information in the PAN and LR MS images. Building
on the success of MRA, some MRA-like approaches are developed for
pan-sharpening, including support value transformation [39], support
tensor transformation [40], and morphological filters [41].

In the third category, LR MS and PAN images are thought of as
the degradation results of the HR MS image in spatial and spectral
domains, respectively. Then, the pan-sharpening task is regarded as
the image restoration problem. Naturally, the fused image is estimated
by solving the inverse problems derived from the spatial and spectral
degradation models. Since the ill-condition of the degradation models,
priors existing in source images or the HR MS image are mined for
the regularization of its solution space. The vast majority of DM-
based pan-sharpening methods utilize different forms of sparsity to
generate the fusion result [42]. Besides, the gradient prior [43] and
low-rank prior [44] are also considered in the pan-sharpening task
due to their success in low-level computer vision tasks, such as image
superresolution [45] and denoising [46].

Recently, DNN-based pan-sharpening methods have gained popu-
larity thanks to the powerful capabilities of nonlinear learning [47].
Leveraging on the success in computer vision tasks, a large variety
of DNNs are adopted and trained in a supervised manner for pan-
sharpening. On the one hand, supervised learning makes DNN-based
methods outperform the three kinds of methods mentioned above. On
the other hand, outstanding performance benefits from a large volume
of data and greater computing power. With diverse DNNs springing
up, such as generative adversarial network [48] and transformer [49],
there is a great deal of interest in improving the fusion performance and
satisfying high flexibility and feasibility in a real scenario. However,
it is difficult to categorize DNN-based methods according to the type
of their networks, since network types grow exponentially. Compared
to most low-level tasks, the most significant distinguishing factor of
pan-sharpening is characterized by its dual-source input. Considering
the stages and patterns of the dual-source information combination in
LR MS and PAN images, DNN-based pan-sharpening methods can be
grouped into three subcategories: source image concatenation (SIC),
feature concatenation (FC), and feature fusion (FF).

To avoid excessive division, each pan-sharpening method is catego-

rized according to its characteristics that are distinct from its remaining
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ounterparts. In this way, mess categories will be prevented and the
axonomy depicted in Fig. 4 becomes more meaningful and informative.
hese four categories will be described in detail in the following
ubsections.

.3. CS-based methods

In this section, we introduce the pan-sharpening methods based on
S in detail. The key to these techniques lies in the accurate estimation
f the spatial component from the LR MS image. However, owing to
he high inseparability of the spatial and spectral information in the
R MS image, it is difficult to synthesize the spatial component, which
s well-matched with the corresponding PAN image. In addition, the
ismatches in terms of the spectral range between LR MS and PAN

mages cannot be ignored. Fig. 5 displays the spectral response ranges
f MS and PAN images from different satellites. One can see that
he spectral range of the MS image cannot exactly cover that of the
AN image, which will inevitably introduce spectral distortions into
he fused image. Therefore, issues about spectral response ranges and
he synthesis of the spatial component are vital to reduce the spectral
istortions for the methods based on CS.

Compared to other kinds of methods, CS-based methods behave
ell in terms of the enhancement of the spatial details in the fused

mage. They are characterized by their simple operation and are easy
o implement. Although these methods are not expected to obtain a
ompetitive performance with respect to other kinds of methods, such
s DM- and DNN-based methods, their simplicity and effectiveness still
ake them worthy of further study and attractive for researchers.

Mathematically, the pan-sharpening methods based on CS are sum-
arized by Vivone et al. [31] and can be generally written as:

= 𝐋 + 𝑔
(

𝐏 − �̃�
)

(1)
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𝑏 𝑏 𝑏
here �̃� is the spatial component derived from the LR MS image
hrough a specific transformation. 𝑔𝑏 is the injection coefficient for the
th band of the LR MS image. In Eq. (1), �̃� can be synthesized by some
ransformations. The general form of the synthesis of �̃� is defined as:

̃ =
𝐵
∑

𝑏=1
𝑤𝑏�̃�𝑏 (2)

where 𝑤𝑏 is the weight corresponding to �̃�𝑏. Obviously, the adopted
transformations and injection gains are two crucial factors that affect
the fusion performance of the CS-based methods. According to the
adopted transformation, the methods in this category can be grouped
into four sub-classes: IHS [34], PCA [35], GS [36], and band-dependent
spatial detail (BDSD) [50]. An overview of these methods is presented
as follows.

• IHS: This kind of methods use IHS to produce the intensity com-
ponent of the LR MS image, which is then replaced by the PAN
image. In IHS, the intensity component is obtained by averaging
all bands in the LR MS image, which means the weight 𝑤𝑏 in
Eq. (2) for each band is 1

3 . Unfortunately, although the synthesis
of the intensity component is straightforward, the MS image is
usually made up of 4 or 8 bands. Therefore, this kind of methods
will face serious limitations if the transformation can only deal
with the MS image with 3 bands. To broaden the application of
IHS, Tu et al. [51] took the high reflectance of vegetated regions
in the near-infrared band into consideration and set the weights of
both red and near-infrared bands as 1

3 . The weights for green and
blue bands are decided by their spectral response ranges, which
are set as 𝑎

3 and 𝑏
3 . For a and b, 𝑎+ 𝑏 = 1. In the above-mentioned

two cases, the differences between 𝐏 and �̃� are directly combined
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Fig. 5. Spectral responses of QuickBird and IKONOS.
with the upsampled image �̃�𝑏, and thus the injection gains are 1
for each band.
Compared to the injection gains independent of the image con-
tent, the adaptive estimation of injection gains will alleviate the
spectral distortions in the fused image. For instance, Rahmani
et al. [52] proposed an adaptive IHS (AIHS) method, in which the
weights were calculated by approximating 𝐏 through the combi-
nation of the bands �̃�𝑏, and the injection gains for all bands were
computed from the edge maps derived from 𝐏. Subsequently, an
improved adaptive IHS (IAIHS) method was presented in [53],
where the injection gain 𝑔𝑏 for each band was jointly determined
by the edge maps from 𝐏 and �̃�𝑏. Thus, the spectral informa-
tion can be preserved better in the fused image by using the
method in [53]. Based on AIHS and IAIHS, Ghahremani et al. [54]
presented nonlinear IHS, in which the spatial component �̃� was
synthesized locally.

• PCA: PCA [35] is another classical transformation often used in
CS-based pan-sharpening methods. According to the formulation
of PCA, the variance of the first principal component (1st PC) is
the largest among all PCs. It indicates that the 1st PC contains
the most information and so the 1st PC is regarded as the spatial
component of the LR MS image. Specifically, the 1st PC of the
LR MS image is selected and substituted by the PAN image,
which is different from the intensity component generated by IHS.
Although the 1st PC includes abundant spatial details, it does not
mean that the 1st PC is the most similar to the PAN image.
In this sense, Yang et al. [55] adopted adaptive PCA to find
the most similar PC to the PAN image, in which the similarity
between PCs and the PAN image was measured by the correlation
coefficient. In [56], the spatial PCA and the spectral PCA were
combined to infer a more similar spatial component. Besides, the
spatial PCA was also considered in [57] and indirectly applied to
the spatial details of 𝐏. To extract reasonable spatial details, mod-
ulation transfer function (MTF) based filters were implemented
on 𝐏. Subsequently, PCA was also employed for pan-sharpening
in [58] and the chromatic components were conditionally filtered
according to the structures in the PAN image, which adjusted the
injection gains through nonlocal optimization.

• GS: GS [36] is also a common transformation used for pan-
sharpening. Based on the synthetic spatial component �̃�, GS is
designed to obtain orthogonal vectors from the up-sampled LR
MS image. After the projection of GS, all components are pairwise
orthogonal. Then, the spatial component �̃� is replaced by the PAN
image. Finally, the fused image is obtained through the inverse
transformation on the new components. Clearly, the production
of �̃� plays an important role in the reconstruction of the fused
image.
Aiazzi et al. [59] minimized the mean square error to obtain the
optimal weights for the generation of �̃�. Wang et al. [60] con-
sidered the particle-swarm-optimization algorithm to minimize a
232
non-differentiable function and achieved adaptive weights. Actu-
ally, researchers can have many kinds of methods to estimate the
combined weights. However, the inflexible orthogonal projection
limits the room for improvement of GS-based methods. Therefore,
the number of variants of GS-based method is less than those of
other kinds of transformations.

• BDSD: According to the former three sub-classes, we can see
that content-dependent weights lead to fewer spectral distor-
tions in the fused image. Under the circumstances, BDSD [50]
further extended the general formulation in Eq. (1). In BDSD,
the weight for each band �̃�𝑏 was adaptively estimated from the
corresponding downsampling PAN and MS images by the least
square criterion. Compared to the global computing strategy,
the approximating precision will be high by using the weights
estimated from local regions, because of the differences in terms
of the spectral response of different objects. Further, the partition
strategy considering image content has a better performance in
terms of the spectral distortion than the approaches that directly
segment the image into patches.
Based on the idea, many variants of BDSD are advanced. For
instance, Garzelli [61] further proposed an improved version C-
BDSD to deal with the preservation of spatial consistency, which
utilized K -means clustering to find more consistent regions. In
C-BDSD, the intensity and local standard deviation of the PAN
image were regarded as the feature for clustering. In [62], spa-
tial features were extracted by the Gabor filter bank, and then
the fuzzy c-means algorithm was employed to achieve cluster-
ing. Besides, Imani [63] also established an improved methods
based on BDSD, named CR-BDSD, which used the collaborative
representation of �̃�𝑏 instead of �̃�𝑏 to efficiently smooth the spa-
tial details in �̃�𝑏. Recently, Vivone [64] presented three robust
fusion methods based on BDSD, in which outlier removal, bi-
square regression, and physical constraints were combined with
the objective function to tackle different cases.

2.4. MRA-based methods

Although CS-based methods have been widely studied and inte-
grated into various interpretation tasks of the observed scene, it is
difficult to ignore the spectral distortions in the fusion results of these
methods. The reason for this is that the spatial component of the LR MS
image is directly replaced by the PAN image. A viable solution is only
injecting the spatial details needed into the LR MS image. In this case,
MRA enters the vision of the pan-sharpening research for the modeling
of spatial details in source images. In MRA-based methods, only spatial
details from the PAN image are injected into the LR MS image, so they
behave better in terms of the preservation of the spectral information.

Summarily, the formulation of MRA-based methods is defined as:

𝐇 = 𝐋 + 𝑔
(

𝐏 − �̂�
)

(3)
𝑏 𝑏 𝑏
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Table 3
Summary of related MRA-based pan-sharpening methods.

Tool Reference Gain description

GLP

Vivone [65] Full scale regression
Vivone [66] Reduced scale regression
Restaino [67] Multiple linear regression
Addesso [68] Data-driven multivariate regression

Wavelet

Otazu [69] Spectral response, physical constraint
Vivone [70] Spectral response, physical constraint
Lu [71] Local covariance/local variance
Kallel [72] Covariance/variance
Yang [73] Fuzzy logic and maximum selection

Contourlet

Shah [74] 1
El-Mezouar [75] Local energy of coefficients
Upla [76] 1
Li [77] Sparse coefficient

Curvelet Dong [78] 1
Devulapalli [79] Adaptive neuro-fuzzy inference

Framelet
Shi [80] Covariance intersection
Wang [81] Random walks
Zhao [82] SFIM

Shearlet Shi [83] Pulse-coupled neural network
Moonon [84] Local energy

MRA-like

Zheng [39] 1
Xing [40] Low frequency
Restaino [41] Morphological operators
Yang [85] Multiscale guided filter
Yin [86] Nonlocal means filter

where �̂� is the low frequency of 𝐏. It can be observed that the fusion
erformance of this category is also impacted by the extraction of high
requencies and the estimation of the injection gain 𝑔𝑏.

Thanks to the variety of available MRA tools, many efficient pan-
harpening methods are proposed. In Table 3, we list the representative
an-sharpening methods based on MRA, where high-frequency extrac-
ion tools and the priors of the gains are described briefly. These
ethods can be characterized according to whether the adopted tools

re derived from MRA. MRA-based methods directly utilize the existing
ools to extract the spatial details in source images. For the methods
nspired by the framework of MRA, they are termed as MRA-like
ounterparts. The following parts present the representative methods
or each sub-class.

• MRA: As mentioned above, MRA has a great capacity to model
the high frequencies in source images. The development of MRA-
based pan-sharpening methods is accompanied by the emergence
of different modeling tools. There are several representative tools
for the extraction of spatial details, including generalized Lapla-
cian pyramid (GLP), Wavelet, Contourlet, Curvelet, Framelet, and
Shearlet. In Table 3, we list some pan-sharpening methods based
on these tools.
To efficiently approximate the spatial information of images at
different scales, the pyramidal decomposition model was inves-
tigated intensively. For instance, the Laplacian pyramid (LP) is
extended to GLP for pan-sharpening. Vivone et al. [65] used
GLP for high-frequency extraction and the injection gains were
adjusted at the full scale by regression, which could avoid the
differences in injection coefficients at different scales. Within
the framework of GLP, many researchers [66–68] turned their
attention to the efficient calculation of injection coefficients. As a
classical MRA tool, wavelet is also considered. Otazu et al. [69]
introduced spectral response and physical properties of the ob-
served scenes into wavelet-based methods, which could produce
better fusion results. Then, Vivone et al. [70] further revisited
AWLP [69] for reproducible results. Similar to the improvement
of other MRA-based methods, the inherent properties among
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bands of the MS image were exploited in [71–73] to develop
more advanced wavelet-based variants and produce better fusion
results.
A wave of pan-sharpening methods is achieved on the strength of
more advanced MRA tools beyond wavelet. In [74], Shah et al.
used the nonsubsampled contourlet for the enhancement of the
spatial information in the fused image. Moreover, the nonsub-
sampled contourlet was also combined with other approaches to
preserve the spatial details better, including local energy [75],
Markov prior [76], and sparse autoencoder [77]. To capture the
orientation of spatial details in the image, curvelet transform was
also considered in [78] to improve the representation capability
for edges in LR MS and PAN images. A high-frequency fusion
rule derived from adaptive neuro-fuzzy inference was used to
integrate the coefficients of LR MS and PAN images after the
curvelet transform in [79].
Different from the contourlet and curvelet, the framelet is also
explored for pan-sharpening [80–82]. The framelet favors a high
number of vanishing moments, which leads to a sparse represen-
tation in the transform domain. With flexible direction feature
representation, Shi et al. [83] proposed an image fusion method
based on the shearlet, where the high-frequency coefficients were
fused by a pulse-coupled neural network [87]. In [84], nonsub-
sampled shearlet transform was used for pan-sharpening, in which
high frequencies and low frequencies were fused by the local
energy and sparse representation [88].

• MRA-like: In view of the fact that MRA-based pan-sharpening
methods preserve the spectral information better, some MRA-
like tools are also developed, such as support value transforma-
tion [39], support tensor transformation [40], and morphological
filters [41] mentioned above. Finding efficient filters is crucial to
the MRA-like based pan-sharpening methods. In [85], multiscale
guided filters were used to obtain the high frequencies from the
PAN image. Besides, Yin et al. [86] proposed multiscale nonlocal
means filters to decompose the spatial information in images,
which could reduce the spatial distortions in the fused results.

For MRA-based methods, the spectral information in the fused
mage can be preserved well because only the high frequencies, such
s spatial details, are injected into the LR MS image. However, it is
ensitive to the spatial correspondence. When the spatial information
rom the PAN image is not matched with that from the LR MS image,
ocal dissimilarities will appear. Besides, some spatial artifacts are
ntroduced into the fused image owing to the excessive injection of
patial details from the PAN image.

.5. DM-based methods

CS- and MRA-based pan-sharpening methods both utilize some
ransformation to infer the missing information in the LR MS image
rom the PAN image. However, the coupling of the spatial and spectral
nformation makes them difficult to avoid distortions in the fused
mage. The framework of the image restoration brings the efficient
reservation of the spatial and spectral information possible. In this
ontext, DM-based methods employ various optimization algorithms
o jointly restore the desired HR MS image from the LR MS and PAN
mages.

Specifically, the spatial and spectral degradation models can be
efined as:

= 𝐃𝐁𝐙 + 𝑛 (4)

𝐘 = 𝐒𝐙 + 𝑛 (5)

where 𝐃 and 𝐁 are the spatial downsampling and blurring matrices. In
Eq. (5), 𝐒 denotes the spectral downsampling matrix derived from the
spectral response function of imaging sensors. 𝑛 is the additive noise.

Obviously, the solutions in Eqs. (4) and (5) are ill-posed and satisfactory
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fusion results are difficult to be obtained due to a lot of potential
solutions. Therefore, various priors are introduced to regularize the
solution space of the fused image, which can be formulated as:

min
𝐙

1
2
‖𝐗−𝐃𝐁𝐙‖2𝐹 + 𝜆

2
‖𝐘 − 𝐒𝐙‖2𝐹 + 𝛼𝑅 (𝐙) (6)

here 𝜆 and 𝛼 are the tradeoff parameters. 𝑅 (𝐙) stands for the regular-
zation term, which can efficiently embed many priors. Thus, the fusion
f LR MS and PAN images is achieved from the perspective of image
estoration tasks [89].

Researchers deeply analyze the priors existing in image, such as
parsity, gradient prior, and low-rank prior, for pan-sharpening and
any DM-based methods are developed. The following sections intro-
uce these latent priors briefly.

• Sparsity : As a prevalent prior, sparsity is exploited widely for the
fusion of LR MS and PAN images due to its flexible formulation
and decent properties. Inspired by the compressed sensing the-
ory [88], a seminal framework was advanced in [90], in which
the spatial and spectral degradation matrices were viewed as the
measurement matrices. Then, the pan-sharpening problem was
solved by the basis pursuit algorithm [91]. Although the unavail-
ability of the HR dictionary hindered the fusion of LR MS and PAN
images at full scale, the proposed method in [90] brought a burst
in this field. Subsequently, some improved versions [92–95] were
presented to enhance the utility of the pan-sharpening framework
based on compressed sensing.
Except for the compressed sensing framework, researchers also
explored different forms of sparsity to ensure its efficiency and
flexibility. Zhu et al. [96] estimated the sparse representation of
the MS image on the dictionary constructed by the PAN image.
The mapping between LR and HR patches in [96] was then
solved by [97] from the point of manifold learning. The sparse
priors in the texture domain were analyzed in [98–100], and
modeled by different formulations. Zhang et al. [101] adopted the
convolution sparse coding [102,103] to cope with the damage in
terms of global structure and spatial consistency caused by the
standard sparse representation.

• Gradient Prior : Owing to better spatial information preservation,
the priors about gradients in MS and PAN images are also con-
sidered to regularize the model in Eq. (6). As an efficient prior
in the gradient domain, total variation (TV) [104] is introduced
into the pan-sharpening task [105]. In computer vision tasks, TV
has been applied to image restoration and produced remarkable
performance. When TV is employed for pan-sharpening, it is
often adjusted for better fusion results according to the prop-
erties in source or HR MS images. Researchers generally find
new domains [43,106] to investigate the attributes of TV. Some
methods [107–109] replaced the 𝐿1 or 𝐿2 norm imposed on TV
with other norms by analyzing the probability distributions of the
images.
In addition to the TV prior, some methods assume that the spa-
tial and spectral relationships among source images and HR MS
images can be inherited into their counterparts in the gradient
domain. For instance, Fang et al. [109] constructed a spatial term
for the characterization of the spectral degradation relationship in
the gradient field. Fu et al. [110] designed a similar term to that
in [109] for the preservation of spatial information. To remove
the cloud in remote sensing images, Meng et al. [111] proposed
a joint fusion and missing information reconstruction method and
formulated the spectral information into the variation framework.
Wang et al. [112] also used the spectral degradation model in
PAN and HR MS images to ensure the geometric information
consistency of the pan-sharpened image in the gradient field.
Moreover, some methods obtained the fusion results by minimiz-
ing the gradient differences between the PAN image and HR MS
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images. In [113], Chen et al. designed a dynamic gradient sparsity
term to make the gradients in each band of the HR MS image
coincident with those in the PAN image. Further, Liu et al. [114]
assumed that the second-order gradients in the HR MS image
should also be similar to those in the PAN image. By dividing
images into different components, Liu et al. [115] imposed the
gradient difference prior on the cartoon and structure components
of HR MS and PAN images. Tian et al. [116] obtained the fi-
nal pan-sharpened image by minimizing the gradient differences
between the desired fused image and the coarse HR MS image
produced by sparse representation.

• Other priors: The richness of the prior information in images
makes DM-based pan-sharpening methods retain their appeal to
researchers. As a typical structural sparse prior, low-rank prop-
erties in images are also used to regularize the fusion model in
Eq. (6). For example, Yang et al. [44] reformulated the pan-
sharpening problem via robust PCA [117], in which the spatial
and spectral correlations in all bands of HR MS images were
modeled by a low-rank matrix. Meanwhile, an alternative form
of low-rank matrix factorization, Go Decomposition [118] was
used in [119] to extract the low-rank components in the LR MS
image. Some methods [120–123] combined the low-dimension
constraints with other priors and imposed them on the desired
HR MS image.
Besides, the local, nonlocal, and non-negative properties in im-
ages are also considered to reconstruct the fused image better. For
example, Wang et al. [124] presented a pan-sharpening method
based on sparse representation and local similarity [125], in
which local autoregressive parameters learned from the PAN
image were shared with the HR MS image. Khademi et al. [126]
expressed the local prior by Markov random field to pass the
spatial information of the PAN image into the fused image. The
nonlocal similarity in the PAN image is captured in [127] to
facilitate the solution space of the fusion result. In [128], Zhang
et al. proposed a coupled sparse non-negative matrix factorization
model for the fusion of LR MS and PAN images, by which the
non-negativity of pixel values in images can be naturally assured.

Although DM-based pan-sharpening methods achieve satisfactory
HR MS images, their usability is cursed by high computational com-
plexity and the generalization of the adopted prior. On the one hand,
this kind of method is solved by iterative optimization algorithms. The
involved iterations take a longer time for the calculation of the optimal
solution. On the other hand, DM-based methods are heavily dependent
on the priors in Eq. (6). However, these priors are valid only under
specific assumptions, which limit their performance and generalization.
Moreover, as the launched satellites age, the MTFs of imaging sensors
gradually change. In this situation, some reconstruction errors may be
introduced owing to the misestimated spatial and spectral degradation
matrices.

2.6. DNN-based methods

The past ten years have witnessed the great success of DNN in
various fields [129–135]. For example, Zhang et al. [136] investigated
a feed-forward denoising convolutional neural network to handle Gaus-
sian noises with unknown levels, in which residual learning [137] was
utilized to boost the performance. Dong et al. [138] constructed a deep
convolution neural network to learn the end-to-end mapping between
LR and HR images and they analyzed the network structures and
parameter settings to generate satisfactory superresolution results. For
image deblurring, Ren et al. [139] presented two generative networks
to reconstruct clean images and blur kernels.

The explosion in the computer vision field naturally spreads to the
fusion of LR MS and PAN images. As mentioned in Section 2.2, it
would be unrealistic to divide the DNN-based pan-sharpening methods
according to the network structures adopted by them. When DNNs in
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Fig. 6. Schematic diagrams for (a) SIC, (b) FC, and (c) FF, which are DNN-based pan-sharpening methods.
the computer vision field are transferred to the pan-sharpening task or
new DNNs are designed for this task, the overriding consideration is
how to deal with the dual-source input: LR MS and PAN images. There-
fore, we capture the fundamental difference between pan-sharpening
and other remote sensing image processing or computer vision tasks
and divide DNN-based methods into three sub-categories: source image
concatenation (SIC), feature concatenation (FC), and feature fusion
(FF), whose general diagrams are shown in Fig. 6. The following is a
brief presentation of the representative DNN-based methods:

• SIC: For the dual-source input, the straightforward way is com-
bining LR MS and PAN images into one, which is source image
concatenation (SIC). SIC implies that the LR MS and PAN images
are directly concatenated as an image with 𝑁+1 channels, which
are then fed into DNNs. Masi et al. [140] first adopted a simple
and effective three-layer architecture, termed PNN, to learn the
mapping between the concatenated image and the HR MS image.
Subsequently, Scarpa et al. [141] explored different architectural
and training variations and extended PNN as a target-adaptive
method to ensure the desired performance.
Owing to the simplicity of SIC, this kind of method is more
concerned about the architecture design of DNNs. The frequently
used architectures include residual network [142–146], U-Net
[147–149], and multiscale network [150–152]. Some researchers
[153,154] integrated DNNs into the Amélioration de la Résolution
Spatiale par Injection de Structures framework to make full use of
the advantages of the two formulations. The attention network
was also considered in [155] to learn the nonlocal similarity in
source images. For the DNN-based methods that adopt SIC for
pre-processing, they cannot efficiently exploit the complemen-
tary information in LR MS and PAN images, and the abundant
information cannot be suppressed by DNNs.

• FC: Compared to the concatenation in original images, FC deals
with the information from different sub-networks in the feature
domain. In this way, some redundant information is filtered by
the pre-processing transformation or sub-networks in advance,
which may avoid spatial and spectral distortions in the fused
image. For example, Imani [156] stacked the feature maps of
the LR MS and PAN images in the frequency domain as the
input of a single layer convolution network, which applied 3D
Gabor filters and shearlet transform to the domain projection.
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In [157], a Laplacian pyramid was constructed to model the
spatial information at different frequencies.
To obtain an adaptive transformation for feature extraction, the
hand-crafted projection is replaced by the corresponding sub-
networks. In [158,159], the outputs of two sub-networks were
bundled together in the feature domain and fed into the genera-
tive adversarial network (GAN) [160]. An encoder–decoder con-
ditional GAN was designed in [161] to generate more spatial de-
tails in the fused image. TFNet [162] is a typical two-stream net-
work to deal with the dual-source input for pan-sharpening. Based
on the two-stream architecture, the multiscale property [163,
164], feedback connections [165], and dense connections [166]
are introduced to extract more subtle feature maps by the sub-
networks. Although good performance is achieved for FC, it can-
not remove the redundancy among feature maps from differ-
ent sub-networks. Moreover, the computational complexity may
increase owing to the concatenation operation.

• FF : FC is a simple and direct operation to deal with the feature
maps from different sub-networks. Thus, it is widely adopted
by many DNN-based methods. Compared to the simplicity of
FC, FF is introduced and intended to merge the complementary
information of LR MS and PAN images in the feature domain
by different fusion rules [167]. In this sub-category, addition,
subtraction, and multiplication between feature maps are often
introduced into different levels of the reconstruction network.
For example, Zhang et al. [168] demonstrated a bidirectional
pyramid network, in which the feature maps of the PAN image
were directly added to those of the LR MS image from coarse
levels to fine levels. Similarly, Luo [169] constructed a series of
stacked fusion units containing feature addition for the generation
of the HR MS image. In [170], the addition and subtraction
of feature maps were used in combination. Uezato et al. [171]
considered the multiplication operation to integrate the feature
maps in which the semantic features in the guided decoder were
used to facilitate the corresponding decoder.
Besides the arithmetic operations in the feature domain, Diao
et al. [172] utilized two sub-networks with different attention
mechanisms [173,174] to extract the spatial and spectral fea-
tures, which are then integrated by a graph attention module
to emphasize the informative feature maps. FF can eliminate
the redundancy among the features from different sub-networks.
However, it is sometimes difficult to devise proper strategies for
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Fig. 7. Evaluation modes of the fused images.
FF. The difficulty of these methods is exploring reasonable and
interpretable fusion strategies beyond the arithmetic operations
mentioned above.

Apart from the diagrams in Fig. 5, some hybrid methods [175–
177] are also proposed, which integrate SIC, FC, and FF together to
exploit the spatial and spectral information in LR MS and PAN images.
For example, Chen et al. [175] adopted an iterative residual network
to produce the fused image, in which SIC and FC are simultaneously
used to improve the quality of the fused image progressively. The rapid
development of DNNs has created a boom in the pan-sharpening task.
At present, there are many other attempts to tackle the pan-sharpening
problem [178–180]. Very recently, a recently invented neural network,
transformer [181], has already hit the charts in many computer vision
tasks. The self-attention mechanism in the transformer is so powerful
that it soon catches the attention of many researchers [182–188] in this
field. The pan-sharpening driven by the optimization model is another
development trend [189–194]. In these methods, the iterative optimiza-
tion algorithms were unfolded as a network with deep architecture, and
a specific network is equipped to learn the priors in images. While the
use of DNNs injects new vitality into this field, it also brings challenges
and problems, such as generalization. The related issues will be further
discussed in Section 4.

3. Image quality evaluation

As a typical inverse problem, the fused image obtained by pan-
sharpening cannot be directly compared with the reference image in
a real-world scenario. The absence of the reference image makes the
quantitative evaluation of the fusion result difficult. Naturally, two
kinds of image evaluation protocols are considered: reduced-resolution
evaluation and full-resolution evaluation. Fig. 7 displays the evaluation
modes in these two cases. Generally, the quality of the fused image
is evaluated according to Wald’s protocol [29]. Furthermore, Palsson
et al. [195] verified that the properties in Wald’s protocol could provide
a reliable evaluation.

Generally, the fused image is evaluated from three perspectives:
spatial information, spectral information, and overall performance. The
spatial information in the fused image contains abundant texture and
shape characteristics for target detection and recognition [196,197].
The spectral information in the fused image is responsible for the record
of the land cover [198,199]. Therefore, a satisfactory pan-sharpening
method should achieve high accuracy in terms of spatial and spectral
information. Meanwhile, the overall performance of this method will
be high. A fair and comprehensive evaluation can provide reliable
evidence for the selection of pan-sharpening methods. The following
sections describe the spatial indexes, spectral indexes, and overall
indexes in reduced-resolution and full-resolution cases.
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3.1. Reduced-resolution evaluation

In reduced-resolution cases, the reference image has to be prepared
in advance for comparison. To achieve reference-based image evalu-
ation, Wald’s protocol [29] is often used as a guideline to synthesize
the LR MS and PAN images to be fused by spatial degradation. Then,
the original MS image is regarded as the reference image. According
to the consistency property of this protocol, the fused image should be
identical to the original MS image in the reduced-resolution evaluation.
Many indexes are used to measure the similarity between the fused
image and the reference image.

• Spatial Indexes: Spatial indexes aim to assess the abundance of
textures or edges in the fused image. In general, the gradient
amplitude of textures or edges in an image is larger. Thus, the
average amplitude of gradients (AG) is used in some literature to
reflect the spatial quality of the fused image. Besides, the covari-
ance and the standard variance also record the spatial variations
in the fused image. Then, Wang et al. [200] employed a universal
image quality index (UIQI) to model the spatial distortions in the
fused image, which consisted of covariances, standard variances,
and means of the fused image and the reference image. The cor-
relation coefficient (CC) [103] and spatial correlation coefficient
(SCC) [201] were introduced for the evaluation of the spatial
information. Thanks to the achievement in the natural image
assessment, the structural similarity (SSIM) index is sometimes
utilized as a means for the perception of the structure information
in the fused image [202].

• Spectral Indexes: For the evaluation of the spectral information,
the spectral vector of each pixel in the fused image is compared to
that of the corresponding pixel in the reference image. For exam-
ple, Yuhas et al. [203] proposed a spectral angle mapper (SAM)
to calculate the angle between the spectral vectors of the fused
images and those of the reference images. The reconstruction er-
rors can be evaluated by both the root-mean-square error (RMSE)
and the relative average spectral error (RASE) [204]. According
to the formulations of RMSE and RASE, we can know that RMSE
is more sensitive to larger errors than RASE. Chang proposed
the spectral information divergence (SID) [205] to analyze the
spectral differences in the fused image.

• Overall Indexes: In overall indexes, both spatial and spectral in-
formation is assessed. They provide a global tradeoff between the
spatial and spectral information of the fused image. Q4 [206] is a
classical overall index, which adopts hypercomplex numbers, or
quaternions to measure the similarity of the four-band MS image.
Erreur Relative Globale Adimensionnelle de Synthése (ERGAS) [207]
was presented to compute the amount of spectral and spatial
distortions in the fused image. In ERGAS, RMSE and mean values
of each band are combined with the spatial resolution ratio.
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Although the above-mentioned indexes measure the spatial and
spectral properties of the fused image from different perspectives, the
commonly approved indexes only are SAM, Q4, and ERGAS. However,
the similarity between the fused image and the reference image is mea-
sured repeatedly in some indexes to some extent. For example, RMSE is
involved in ERGAS. Due to the spatial and spectral property differences
in reduced-resolution and full-resolution cases, the reference-based
evaluation indexes will introduce a bias with the invalid hypothesis,
although these indexes can be easily calculated.

3.2. Full-resolution evaluation

In the full-resolution evaluation case, the spatial and spectral in-
formation in the fused image is compared to that in PAN and LR
MS images, respectively. In addition, some no-reference indexes are
exclusively calculated according to the spatial and spectral properties
in the fused image. For full-resolution evaluation, the difficulty lies in
the absence of the reference image. The development of full-resolution
indexes revolves mainly around the improvements of the quality with
no-reference (QNR) index and extensions of reduced-resolution indexes.

• QNR and Its Variants: In [208], Alparone et al. proposed three
indexes for spatial and spectral information assessment. The first
index, spectral distortion index 𝐷𝜆, is derived from the differ-
ences of UIQI from the fused image, which measures the spectral
differences with the LR MS image. The spatial distortion index
𝐷𝑠 is calculated according to quality index differences between
the PAN image and its corresponding spatially degraded version.
Then, these two indexes are jointly introduced into the overall
index, QNR, to reflect the global quality of the fused image. Then,
Khan et al. [209] introduced MTFs matched by filters into 𝐷𝜆
and 𝐷𝑠. Thus, the spectral and spatial information in the fused
image can be extracted more reasonably. Palubinskas [210] also
proposed a joint quality measure (JQM), which consisted of QNRs
in full- and reduced-cases.

• Extensions of Reduced-resolution Indexes: Given the availability of
the reference-based indexes, their improved versions are applied
to the full-resolution evaluation. For instance, Vivone et al. [211]
recast the full-resolution evaluation task into a sequential
Bayesian framework, which inferred the Q4 value by repro-
ducing the fusion results at the reduced scale. Subsequently,
Vivone et al. [212] reduced the computational complexity of
the index in [211] by reformulating the state estimation as a
convex combination problem. Besides, Carlé et al. [213] utilized
linear and quadratic polynomials to fit the multiscale distortion
measurements in reduced resolution and then extrapolated them
to full-resolution values.

In full-resolution evaluation, the most commonly used metrics are
𝜆, 𝐷𝑠 and QNR in [208]. However, it is demonstrated that these

ndexes are neither consistent with the visual performance of the fused
mage nor reliable. Some new paradigms are proposed for a more ob-
ective assessment. Zhou et al. [214] learned a benchmark multivariate
aussian (MVG) model for full-resolution quality assessment. In the
VG model, the spatial and spectral features were extracted from 360-

enerated images. Then, the distance between the benchmark MVG
nd the MVG fitted from the fused image can be taken as the quality
ssessment. However, the generated images in [214] cannot include
ll kinds of land covers. It limits the generalization of the benchmark
VG. Thus, it is necessary to establish a more reasonable protocol for

ull-resolution evaluation.

. Limitations, difficulties and challenges

We have presented researches on pan-sharpening and discussed the
iteratures on the quality assessment of the fused image. Though the
usion of LR MS and PAN images has been extensively studied and
chieved good performance, there are still great challenges for pan-
harpening. In this section, we share our insights on challenges and
237

ew trends for pan-sharpening. o
.1. Dataset

As pan-sharpening enters the deep learning era, more and more data
re required for the training of the newly proposed DNN-based meth-
ds. Currently, there are no public and universally approved remote
ensing image datasets for comparison among different pan-sharpening
ethods. Actually, it is difficult to establish an all-around dataset for
an-sharpening, which involves the land cover diversity and seasonal
hanges, and imaging differences of source images. When preparing an
ll-round dataset, we must take into account the following limitations
nd difficulties:

• High Diversity of the Observed Scenes: The dataset to be constructed
should contain as many kinds of land covers as possible. Typical
land cover contains grassland, woodland, farmland, waters, rural,
and urban areas. For a specific DNN only trained on the rural
dataset, the fusion performance will degrade when it is tested
on the LR MS and PAN images from one urban dataset. It is
difficult to balance the fusion performance for the LR MS and
PAN images with various kinds of land covers. Empirically, the
spectral information for vegetation areas cannot be preserved well
for most of the pan-sharpening methods.

• Seasonal Variations: Similarly, the dataset should also consider the
feature differences of the surfaces caused by seasonal variations.
We cannot ignore the spectral differences of vegetation areas
between summer and winter when designing the pan-sharpening
scheme. For DNN-based pan-sharpening methods, the spectral
changes of the land covers lead to a domain shift of the original
dataset. Then, the spectral information of the fused image is
distorted.

• Large Differences in Satellite Imaging Sensors: Due to the instru-
mental differences, the spectral responses of different satellites
have significant differences. The distinct spectral responses mean
that the mapping relationships from source images to the HR MS
image will be different for the datasets from two satellites. In
addition, the MTFs of different satellites are also not the same.
Therefore, if we employ the DNNs trained on the QuickBird
dataset to fuse the LR MS and PAN images from the GeoEye-1
satellite, satisfying results may not be achieved.

To sum up, DNN-based pan-sharpening methods are data-hungry.
nly larger datasets containing all kinds of images ensure that DNN-
ased pan-sharpening methods produce good fusion results. Ultimately,
he construction of larger datasets is used to alleviate the generalization
ssues of DNN-based methods. If one kind of source images is not
resent in the constructed dataset, the fusion results of this kind images
roduced by DNN-based methods may be inferior to those of the
raditional methods. Therefore, it is urgently needed to construct a
arger dataset for the sufficient training of DNNs. The all-around dataset
an also provide an operational scheme to verify the generalization
bility of DNNs on land covers, seasons, and imaging sensors.

.2. Quality evaluation

As an indispensable preprocessing step, pan-sharpening can effi-
iently improve the spatial resolution of the MS image. However,
he goal is to achieve a meaningful interpretation of the observed
cene from the MS image, in which the significant downstream tasks
re object detection [215] and image segmentation [216]. So, the
valuation of the fused image should be conducted from two aspects:
mage-oriented evaluation and task-oriented evaluation. Because of
he difficulties of task-oriented evaluation, it is often neglected. We
onsider the following aspects as the research trends for the evaluation

f the fused image.
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• Image-oriented Evaluation: Generally, the quality of the fused im-
age can be easily evaluated in the reduced-resolution case due to
the existing reference HR MS image. Whereas, the synthesis of LR
MS and PAN images is decided by MTFs, which may introduce
some potential errors. Thus, it is more necessary to evaluate
the image quality in the full-resolution case. Unfortunately, the
frequently-used 𝐷𝜆, 𝐷𝑠, and QNR in [208] sometimes are not
consistent with the visual performance of the fused image. Dif-
ferent from natural images, the radiometric resolution of remote
sensing images is high. The no-reference evaluation indexes for
natural images cannot be simply transferred to the assessment
of remote sensing images. The design of the no-reference image
indexes should comprehensively consider the spatial, spectral,
and radiometric properties in remote sensing images.

• Task-oriented Evaluation: It is desirable that the quality of the fused
image is investigated through downstream tasks. For example, Bo-
volo et al. [217] investigated the effects on the change detection
task of different pan-sharpening methods. As an indispensable
preprocessing step, pan-sharpening can efficiently improve the
spatial resolution of the MS image. So, the downstream tasks can
be performed on the pan-sharpened images of different methods,
and then the accuracy of the related tasks can be used as a
standard for the quality comparison of the fused image. Compared
to the image-oriented evaluation, the task-oriented evaluation
approaches will make pan-sharpening methods more practical.

Currently, there are no available object detection or image seg-
mentation datasets for task-oriented evaluation. Thus, a task-oriented
dataset becomes particularly important. According to Sections 4.1 and
4.2, we can conclude that this field is desperate for an all-around
dataset of high reorganization.

4.3. DNNs for pan-sharpening

• Training : For most of the DNN-based pan-sharpening methods,
an end-to-end strategy is usually adopted. In these methods, LR
MS and PAN images are regarded as the input of DNNs and
then DNNs are trained to approximate the corresponding HR MS
image. But the HR MS image for training is not acquirable. Then,
the original LR MS and PAN images are spatially degraded for
the generation of training image pairs. In the generated dataset,
the degraded LR MS and PAN images are fed into DNNs and
the original MS image is the corresponding reference image.
Although good performance has been achieved by end-to-end
training, it is difficult to neglect the differences in spatial and
spectral properties caused by the spatial resolution ratio between
the reduced-resolution and the full-resolution cases. For example,
the spatial details in the full-resolution dataset cannot be inferred
from the reduced-resolution dataset. Therefore, it is still an open
and promising topic to train DNNs on full-resolution data or
jointly train them on reduced-resolution and full-resolution data.
For instance, Liu et al. [218] tried to combine supervised and
unsupervised training together to simultaneously learn the spatial
and spectral information in reduced-resolution and full-resolution
data.

• New Paradigms: In general, unsupervised DNNs are unable to
produce competitive results compared to supervised DNNs. Nat-
urally, the spatial and spectral degradation models among the
source images and the HR MS image are utilized to facilitate
the training of DNNs. Meanwhile, the paradigm will introduce
some errors caused by degradation models, which limits the per-
formance of DNNs trained in an unsupervised manner. Recently,
unrolling techniques [219,220] have been used in many fields
and gained good performance by combining spatial and spectral
observation models. Thus, the spatial and spectral model-driven
238
DNNs may be a great opportunity to improve the performance
of the pan-sharpened images. Besides, new DNNs are flourishing,
such as transformer [181], graph neural network [221], and zero-
reference GAN [222]. The evolving DNNs will further improve
the quality of the fused image and provide more solutions to the
existing issues in this field.

5. Conclusions

Pan-sharpening can efficiently integrate information of LR MS and
PAN images. The fused image provides a more comprehensive and
reliable description for the observed scene, which is beneficial to the
subsequent interpretation tasks, such as target detection and recogni-
tion. However, it is difficult to realize in the LR MS images or PAN
images. Thus, the fusion of LR MS and PAN images is widely studied
and various methods are proposed. In this paper, we briefly arrange
these pan-sharpening methods into four categories: CS-based methods,
MRA-based methods, DM-based methods, and DNNs-based methods.

For the first category, proper projection methods and injection coef-
ficients play important roles in their formulations. Different transforma-
tion methods are tried to separate the spatial and spectral information
in the MS image. Spectral physical properties are considered to com-
pute more accurate injection coefficients. In the second category, MRA
is viewed as a high-frequency extractor for the estimation of spatial
details, where various MRA tools focus on different image information.
Injection coefficients are calculated by different global or local models.
By combining different priors in LR MS and PAN images, the spatial and
spectral degradation models can be regularized suitably in DM-based
methods. Generally, various optimization algorithms are employed to
solve their final fusion models because of the introduction of well-
designed constraints. In the fourth category, massive attention is paid
to the architecture design for DNNs to deal with the dual input caused
by LR MS and PAN images. In addition, unsupervised training is also
explored in this field because HR MS images are not available for
training.

Besides, we present the quality evaluation of the fused image, which
can be assessed by reduced-resolution and full-resolution indexes. In
the reduced-resolution case, the reference image is necessary. Q4, SAM,
and ERGAS are usually used for evaluation. For the fused image at full
resolution, popular metrics are 𝐷𝜆, 𝐷𝑠, and QNR. However, it is proved
hat these metrics are not proper in some literature. Thus, more reason-
ble full-resolution metrics should be explored further. Additionally, we
lso list promising directions regarding datasets, image evaluation, and
ew paradigms.
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